字典

semi-regular spaces

semi-regular spaces


基本解释:半正则空间

网络释义


semi-regular spaces

1)semi-regular spaces,半正则空间2)LF-semi-regular spaces,LF-半正则空间3)Strong semi-regular space,强半正则空间4)pairwise semi regular space,配半正则空间5)semipositone,半正6)semipositive,半正

汉语字典(www.zxzidian.com)行业英语频道为您提供半正则空间的英文是semi-regular spaces,semi-regular spaces的意思,semi-regular spaces是什么意思等内容,如果您正在查询semi-regular spaces缩写的全称、翻译、解释等信息,本页内容可供您参考

用法和例句


We prove that this concept is hereditary for regular closed subsets,this concept is an L-good extension and strong nearly compact spaces is equivalent to strong F compact spaces in LF semi-regular spaces.在LF-半正则空间中讨论了强拟紧集与强F紧集的等价性。p9J汉语字典

Several equivalent characterizations of quasi-Lindelf space are given,by which it is proved that the quasi-Lindelf space is an L good generalization and that the quasi-Lindelf space is equivalent to Lindelf space in LF-semi-regular spaces.同时在LF-半正则空间中得到了拟Lindelf空间与Lindelf空间是等价的。p9J汉语字典

Positive solution of semipositone singular multipoint boundary value promblem;半正奇异多点边值问题的正解p9J汉语字典

Existence Result for Semipositone Second-Order Three-Point Boundary Value Problem;二阶三点半正边值问题正解的存在性(英文)p9J汉语字典

This paper studies a class of singular semipositone boundary value problem of the fourth order differential equations by using the fixed point index combining with shift transformation.利用不动点指数结合平移变换的方法,研究了一类四阶奇异半正边值问题,得到了其C~2[0,1]∩C~4(0,1)正解存在的一个新结果。p9J汉语字典

By using the theorem on cone expansion and compression and a fixed point theorem on cone,this paper is concerned with the existence of positive solutions for some boundary value problem of singular nonliear semipositive second-order three-point boundary value problem,which improve many known results.运用锥拉伸与压缩不动点定理研究非线性奇异半正二阶三点边值问题正解的存在性,推广了一些已知的结果。p9J汉语字典

We study the existence of positive solutions of fourth order semipositive boundary value problem y (4) -λf(x,y)=0,0<x<1 y(0)=y(1)=y′(0)=y′(1)=0 where λ>0, the main methods are fixed point theorems in a cone.证明了四阶半正边值问题 y( 4) -λf(x ,y) =0 ,0 0且充分小时正解的存在性 ,应用的工具是锥上的不动点定理。